Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Qing Huang, ${ }^{a}$ Hui Zhang, ${ }^{a}$ Jian-Gu Chen, ${ }^{\text {a }}$ Wei Zou ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *
${ }^{\text {a }}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.095$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aquanickel(II)]-di- μ-(4-pyridyl-sulfanyl)acetato- $\left.\kappa^{6} N: O, O ; O, O^{\prime}: N\right]$

The water-coordinated Ni atom in the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, is covalently bonded to two carboxylate groups (one binding in a monodentate mode and the other in a chelating mode); it is also linked to the N atoms of two other carboxylate anions in an octahedral environment. The compound adopts a linear chain architecture; adjacent chains are linked into layers by hydrogen bonds.

Comment

A number of compounds resulting from the reaction of pyridyl-4-thiolylacetic acid with metal salts have been crystallographically authenticated; some of these are neutral complexes whereas others are zwitterions (Qin et al., 2004; Zhang et al., 2004a,b).

(I)

Tetraaquabis(pyridyl-4-thiolylacetato)nickel(II), which exists as a zwitterion, was synthesized hydrothermally in a nearly neutral aqueous solvent system; the reaction when carried out at a lower temperature and for a shorter time gave the title polymeric compound catena-poly[[aquanickel(II)]-di-μ-(4-pyridylsulfanyl)acetato], (I) (Fig. 1), whose Ni atom is instead covalently linked to two carboxylate anions. One of the anions functions as a chelate [bite angle $=60.84(6)^{\circ}$]; its two O atoms, the water molecule and the O atom of a monodentate carboxylate anion are coplanar; the pyridyl N atoms belonging to two other carboxylate anions lie on opposite sides of the plane, these interactions giving rise to a chain motif (Fig. 2).

Experimental

Nickel acetate ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$), 4-pyridylthioacetic acid (68 mg , 0.4 mmol) and sodium hydroxide ($16 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dissolved in a water-ethanol ($12: 5 \mathrm{v} / \mathrm{v}$) mixture $(17 \mathrm{ml})$. The solution was placed in a Teflon-lined stainless-steel bomb (23 ml). The bomb was heated at 393 K for 12 h and then cooled to room temperature. CHN elemental analyses on the green crystals found (calculated) for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NiO}_{5} \mathrm{~S}_{2}$ (\%): C 40.23 (40.70), H 3.42 (3.42), N 6.64 (6.78). IR (KBr): 3385, 2921, 1599, 1579, 1561, 1487, 1430, 1376, 1218, 1147, 1119, 1057, 817, $804,724,701,589,503 \mathrm{~cm}^{-1}$.

Received 1 June 2004
Accepted 3 June 2004
Online 12 June 2004

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=413.10$
Triclinic, $P \overline{1}$
$a=8.1693$ (4) Å
$b=10.3430$ (5) A
$c=10.6876$ (5) \AA
$\alpha=67.371(1)^{\circ}$
$\beta=73.176(1)^{\circ}$
$\gamma=86.825(1)^{\circ}$
$V=796.25(7) \AA^{3}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.665, T_{\text {max }}=0.864$
6789 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.723 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 5217 reflections
$\theta=2.8-26.3^{\circ}$
$\mu=1.51 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, green
$0.13 \times 0.12 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.095$
$S=1.06$
3511 reflections
225 parameters
H atoms treated by a mixture of independent and constrained refinement

3511 independent reflections
3266 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.056 P)^{2}\right. \\
& \quad+0.2563 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{O} 3$	$2.023(2)$	$\mathrm{Ni} 1-\mathrm{O} 1 w$	$2.049(2)$
$\mathrm{Ni} 1-\mathrm{O} 1$	$2.094(2)$	$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.099(2)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$2.210(2)$	$\mathrm{Ni} 1-\mathrm{N} 2^{i i}$	$2.094(2)$
			$92.02(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$60.84(6)$	$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	$88.82(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3$	$166.10(6)$	$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$90.56(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1 w$	$98.41(6)$	$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	$9.20(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.55(6)$	$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 1 w$	$89.29(7)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	$91.65(6)$	$\mathrm{O} 1 w-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$9.43(7)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 3$	$105.37(6)$	$\mathrm{O} 1 w-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{ii}}$	92.
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 1 w$	$158.89(7)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2^{i \mathrm{i}}$	$178.21(7)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$86.52(6)$		

Symmetry codes: (i) $1-x, 2-y, 2-z$; (ii) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1w-H1w2 \cdots O1 ${ }^{\text {iii }}$	$0.84(1)$	$1.88(1)$	$2.722(2)$	$176(3)$
O1 $w-\mathrm{H} 1 w 1 \cdots$ O4	$0.85(1)$	$1.83(2)$	$2.633(2)$	$158(3)$

Symmetry code: (iii) $1-x, 1-y, 2-z$.

The water H atoms were located in a difference map and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA. The aromatic $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and aliphatic $(\mathrm{C}-\mathrm{H}=0.97 \AA) \mathrm{H}$ atoms were placed at calculated positions and refined using the riding-model approximation, with $U_{\mathrm{iso}}=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 2-y, 2-z$; (ii) $1-x, 1-y, 1-z$.]

Figure 2
ORTEPII (Johnson, 1976) plot of the chain structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetry codesas for Fig. 1.]

ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (Nos. 20171037 and 20073034), the Fujian Province Science Foundation (2002F016) and the University of Malaya for supporting this study.

References

Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Qin, S. B., Ke, Y. X., Lu, S. M., Li, J. M., Pei, H. X., Wu, X. T. \& Du, W. X. (2004). J. Mol. Struct. 689, 75-80.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004a). Acta Cryst. E60, m135-m136.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004b). Acta Cryst. E60, m169-m170.

